A transgenic FOXJ1-Cre system for gene inactivation in ciliated epithelial cells.

نویسندگان

  • Yong Zhang
  • Guangming Huang
  • Laurie P Shornick
  • William T Roswit
  • J Michael Shipley
  • Steven L Brody
  • Michael J Holtzman
چکیده

Ciliated airway epithelial cells are critical for mucosal barrier function, including host defense against pathogens. This cell population is often the primary target and thereby the first line of defense against many common respiratory viruses. It is also the precursor for mucous cells and thereby promotes mucociliary clearance of infectious and other noxious agents. Cells with motile cilia in other organs (e.g., brain and reproductive organs) may also have roles in development and reproduction. However, definitive proof of ciliated cell function is hampered by the lack of strategies to specifically target this cell population for loss of function in vivo. To this end, cell type-specific gene promoters have been combined with the Cre/LoxP system to disrupt genes in airway and alveolar epithelial cell populations expressing surfactant protein C (SP-C) or Clara cell secretory protein (CCSP). By contrast, an analogous system to disrupt gene function in ciliated airway epithelial cells was still needed. Here we report the generation and analysis of mouse lines with a FOXJ1 promoter driving the Cre recombinase and show that this system mediates genomic recombination specifically in ciliated cells. The pattern of recombination recapitulates endogenous FOXJ1 promoter function, being restricted to ciliated cells present in pulmonary airways as well as choroid plexus, ependyma, oviduct, and testis. This transgenic mouse system thereby offers a new strategy for specific knockouts of genes in ciliated cells. It should prove extremely useful for defining ciliated cell function in airway mucosal immunity as well as development and reproduction.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The role of f-box factor foxj1 in differentiation of ciliated airway epithelial cells

Factors required for commitment of an undifferentiated airway epithelial cell to a ciliated cell are unknown. Cell ultrastructure analysis indicates ciliated cell commitment activates a multi-stage program involving synthesis of cilia precursor proteins and assembly of macromolecular complexes. Foxj1 is an f-box transcription factor expressed in ciliated cells and shown to be required for cilia...

متن کامل

Role of f-box factor foxj1 in differentiation of ciliated airway epithelial cells.

Factors required for commitment of an undifferentiated airway epithelial cell to a ciliated cell are unknown. Cell ultrastructure analysis indicates ciliated cell commitment activates a multistage program involving synthesis of cilia precursor proteins and assembly of macromolecular complexes. Foxj1 is an f-box transcription factor expressed in ciliated cells and shown to be required for cilia ...

متن کامل

Tissue-Dependent Consequences of Apc Inactivation on Proliferation and Differentiation of Ciliated Cell Progenitors via Wnt and Notch Signaling

The molecular signals that control decisions regarding progenitor/stem cell proliferation versus differentiation are not fully understood. Differentiation of motile cilia from progenitor/stem cells may offer a simple tractable model to investigate this process. Wnt and Notch represent two key signaling pathways in progenitor/stem cell behavior in a number of tissues. Adenomatous Polyposis Coli,...

متن کامل

Selectable Marker Gene Removal and Expression of Transgene by Inducible Promoter Containing FFDD Cis-Acting elements in Transgenic plants

Abstract Background: Selectable marker gene (SMG) systems are critical for generation of transgenic crops. Transgenic crop production Background: Selectable marker gene (SMG) systems are critical for generation of transgenic crops. Transgenic crop production without using SMG is not economically feasible. However, SMGs are non-essential once an intact transgenic plant has been established. Eli...

متن کامل

IL-13 regulates cilia loss and foxj1 expression in human airway epithelium.

Mucociliary clearance is essential to the defense mechanisms of the respiratory system. Loss of normal mucociliary clearance contributes to the pathogenesis of genetic and acquired lung diseases. Treatment of cultured differentiated human airway epithelial tissue with IL-13 resulted in a loss of ciliated epithelial cells and an increase in mucus-secreting cells. The loss of ciliated cells was c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of respiratory cell and molecular biology

دوره 36 5  شماره 

صفحات  -

تاریخ انتشار 2007